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Maxwell-Jüttner distributions in relativistic molecular dynamics

A. Alianoa, L. Rondonib, and G.P. Morrissc

1 Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 1029 Torino, Italy
2 Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 1029 Torino, Italy
3 School of Physics, UNSW, Sydney, Australia

Received 3 October 2005 / Received in final form 28 November 2005
Published online 12 April 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. In relativistic kinetic theory, which underlies relativistic hydrodynamics, the molecular chaos
hypothesis stands at the basis of the equilibrium Maxwell-Jüttner probability distribution for the four-
momentum pα. We investigate the possibility of validating this hypothesis by means of microscopic rel-
ativistic dynamics. We do this by introducing a model of relativistic colliding particles, and studying its
dynamics. We verify the validity of the molecular chaos hypothesis, and of the Maxwell-Jüttner distribu-
tions for our model. Two linear relations between temperature and average kinetic energy are obtained in
classical and ultrarelativistic regimes.

PACS. 05.10.-a Computational methods in statistical physics and nonlinear dynamics – 51.10.+y Kinetic
and transport theory of gases – 47.52.+j Chaos in fluid dynamics – 47.75.+f Relativistic fluid dynamics

1 introduction

The study of relativistic fluids, both from the hydrody-
namic and kinetic point of view has been widely inves-
tigated [1–5]. In this context, the relativistic Boltzmann
equation
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, (1)

represents the best known tool, which is based on a molec-
ular chaos hypothesis, like the Boltzmann equation in clas-
sical kinetic theory. Here xν , pν , F ν are respectively the
position, momentum and force four-vectors, m0 is the rest
mass, Ω is the interaction cross-section, and f is the sin-
gle particle distribution function. Collisionless relativis-
tic plasmas are investigated by means of the relativistic
Vlasov equation, obtained neglecting the collision term in
equation (1). The equations of relativistic Hydrodynam-
ics, which macroscopically describe relativistic fluids, are
derived also from equation (1), similarly to the classical
case.

The chaotic hypothesis, which underlies equation (1),
explains how the microscopic components of a fluid reach
a local equilibrium state. Classically, it is well estab-
lished that this is a consequence of the interactions among
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the particles, as illustrated, for instance, by molecular
dynamics [6].

In order to investigate the validity of the molecular
chaos assumption in relativistic kinetic theory, we propose
a simple model of N relativistic colliding particles, and
investigate the properties of its dynamics.

In fact, to the best of our knowledge, many particle
relativistic systems have only been studied either from a
kinetic or hydrodynamic point of view, because the micro-
scopic dynamics of such particle systems presents many
difficulties. For instance, it is highly problematic to write
covariant Hamiltonian (and the related 4-vector equations
of motion) for the systems. Other difficulties concern: the
choice of the reference frame, since every particle has a
different proper time; the form of the interaction poten-
tial, since the action and reaction principle holds only for
contact interactions; the effects of length contraction and
time dilation. The consequence of this is that, as far as
we know, no direct microscopic evidence for the molec-
ular chaos hypothesis in relativistic dynamics has been
provided.

To overcome this difficulty, we propose a non-covariant
Hamiltonian written with respect to the center of mass
frame, taken as the Lorentz rest frame, which yields the
non-covariant equations of motion
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where N is the number of particles. For the force F WCA
j

we propose to use
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where rij = (ri − rj), rij = |rij |, ΦWCA
ij is the Weeks-

Chandler-Andersen interaction potential [7]; the quanti-
ties ε and σ are obtained from the Lennard-Jones (LJ)
potential which defines ΦWCA

ij , and represent respectively
the depth of the LJ potential, and the distance at which
it changes sign.

Therefore, particles move according to the relativistic
dynamics when they do not interact, while their interac-
tions are modelled classically, so that the total momentum
and the total kinetic energy of particles are preserved by
the collision process. Although this is not completely rig-
orous, our procedure meets all the microscopic require-
ments of relativistic kinetic theory, i.e. the invariance of
the momentum 4-vectors.

In this paper we simulate a 2D system of N relativistic
particles (with N = 28), through a MD algorithm, which
implements the equations of motion (2, 3) with periodic
boundary conditions, for a density ρ = N/A = 0.2 (with
A the cell area), which is not a low density case. The sim-
ulations are performed for different initial kinetic energies
corresponding to classical, relativistic and ultrarelativistic
regimes. Furthermore, we take ε = σ = 1.

In the low density limit, the contribution of the colli-
sions is expected to become negligible, and the dynamics
to tend to a fully covariant dynamics.

2 Results

Our results show that the simulated systems all reach an
equilibrium state since their observables, such as the pres-
sure, converge to an equilibrium value, while the probabil-
ity distribution functions (PDFs) of the values of micro-
scopic quantities like momentum px and kinetic energy ξ
reach an invariant form. In particular, we find that the
PDFs of px reduce to the Maxwell-Boltzmann (MB) dis-
tribution in the classical limit, as desired. This is due to
chaos in the dynamics, which is evidenced by the fact that
the numerically evaluated largest Lyapounov exponents
are positive.

2.1 Probability distribution functions

The standard relativistic kinetic theory predicts that the
PDF of pα has the form of the Maxwell-Jüttner (MJ) dis-
tribution, fMJ = d exp (−Uαpα/kBT ), with d a normal-
ization constant and Uα the hydrodynamic four-velocity

(with Uz = 0) [1,2]. In the local rest frame, fMJ can be
written as

fMJ (px, py) = d exp
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where px, py are the spatial components of pα, c is the
speed of light, and where d and a are two constants related
by the normalization condition
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)
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. (5)

As well known [1,2], a involves the temperature of the
system1, because

a = m0c
2/kBT. (6)

Integrating equation (4) over py, one obtains the PDF
for px only:
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where K1(x) is the modified K-Bessel function of first or-
der. Considering the kinetic energy ξ = c

√
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2, equation (4) can also be rewritten as
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It is interesting to observe that, if an expression like the
MB distribution was written for the relativistic px, i.e. if
one started from
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the PDF of the relativistic kinetic energy ξ, after some
calculations, would take the form
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Comparing equations (9, 10) with equations (7, 8), one
notices that the MJ distribution is not merely the MB
distribution with the relativistic px and ξ in place of the
classical momentum and kinetic energy.

We fit the histograms constructed through our MD
simulations to the PDFs given above, and for simplicity
we take m0 = c = 1.

The following figures 1, 2, 3 are obtained for different
mean kinetic energies, where the mean kinetic energy is
the time average of the total kinetic energy divided by
the number of particles. The histograms are constructed

1 By definition [8], classical is the regime with a � 1 and
ultrarelativistic the regime with a � 1.
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Mean kinetic energy per particle = 9.87 × 10−2
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Fig. 1. Fit of the data for momentum px on a log scale (left panel). Fitted histograms of the kinetic energy ξ in linear scale
(right panel). The parameter of the Maxwell-Jüttner PDFs takes the value a = 10.4875 for the PDF ofpx yielding kBT = 0.095
(left panel), and a = 11.2595 for the PDF of ξ leading to kBT = 0.089 (right panel). The classical Maxwell Boltzmann PDFs
fits well the data only in the low energy cases.

Mean kinetic energy per particle = 9.83 × 10−1
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Fig. 2. Fit of the data for momentum px on a log scale (left panel). Fitted histograms of the kinetic energy ξ in linear scale
(right panel). The parameter of the Maxwell-Jüttner PDFs takes the value a = 1.4067 for the PDF of px yielding kBT = 0.711
(left panel), and a = 1.4225 for the PDF of ξ leading to kBT = 0.703 (right panel). The classical MJ distributions fits better
the data than the MB ones at these energies.

recording the instantaneous values of momentum px and
kinetic energy ξ for a given particle. This operation is
repeated every 200 timesteps, in order to decorrelate the
recorded data.

For the Maxwell-Jüttner PDFs, if the parameters a
and d are obtained as independent parameters by fitting
the numerical data to equations (7, 8), the normalization
condition (5) both for px and ξ is verified. This indicates

that the MJ-PDF is indeed appropriate for our data, and
that the data are consistent.

2.2 Measurement of temperature for a relativistic
system

The microscopic definition of the temperature of a sys-
tem composed by relativistic particles is an open is-



364 The European Physical Journal B

Mean kinetic energy per particle = 6.87
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Fig. 3. Fit of the data for momentum px on a log scale (left panel). Fitted histograms of the kinetic energy ξ in linear scale
(right panel). The parameter of the Maxwell-Jüttner PDFs takes the value a = 0.2540 for the PDF of px yielding kBT = 3.937
(left panel), and a = 0.2501 for the PDF of ξ leading to kBT = 3.998 (right panel). The MB does not fit the data at these
ultrarelativistic energies.

Temperature vs Mean kinetic energy per particle
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Fig. 4. Plot of temperature vs mean kinetic energy per particle. Temperatures are calculated through equation (6) from the
fitting parameter a−1 = kBT , obtained both for the kinetic energy(∗) and the px (�). The two different calculations yield
indistinguishable values in this figure. In the left panel the classical regime is plotted, while in the right one the ultrarelativistic
limit is shown. In both panels the dotted lines represent the relation between kBT and ξ valid in the low energy cases; the
dash-dotted lines the relation between kBT and ξ valid in the high energy cases.

sue [9]. However, the Maxwell-Jüttner PDF contains one
parameter, which, in analogy with the classical Maxwell-
Boltzmann PDF is identified with the quantity kBT .
Therefore, observing that the Maxwell-Jüttner PDFs fit
well our histograms, it becomes reasonable to assume for
our system a−1 = kBT as a definition of temperature ob-
tained from the microscopic dynamics.

A linear relation between this temperature and the
mean value of the kinetic energy per particle has been
found for the classical and ultrarelativistic cases. For
kBT = a−1 � 0.1 (classical regime), the relation
was found to be, as expected, kBT = ξ, while for
kBT = a−1 � 1 (relativistic and ultrarelativistic regimes),
we verified a linear relation of the form kBT = 0.56ξ+0.21.
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The transition between the two regimes takes place in a
small range of kinetic energy values (cf. Fig. 4).

3 Conclusions

In this paper we have tested a 2D molecular dynam-
ics model intended to simulate the microscopic dynamics
of N relativistic colliding particles, with total constant en-
ergy E, and have observed its relaxation to an equilibrium
state.

Our model satisfies the requirements of momentum
and kinetic energy conservation before and after the col-
lisions, underlying the equilibrium relativistic kinetic the-
ory. The histograms found by these simulations for the
momentum px, and for the kinetic energy ξ are well fitted
by the PDFs of the standard relativistic kinetic theory, i.e.
by the PDFs derived from the MJ distributions. In addi-
tion to this, the statistics of the dynamics of our model
reduces to the classical one when the kinetic energy takes
small values.

Our model suffers from the difficulties of not being
fully relativistic, because the particle interactions are
treated classically; therefore, it becomes more and more
acceptable as the particle density decreases, or the colli-
sion rate tends to zero making the dynamics tend to a fully
covariant form. Moreover, as we are going to report in [10],
reducing densities does not produce any qualitatively
different result, which indicates that in the limit of low
collision rates the macroscopic behaviour of our systems is
not substantially different from that of the higher density
cases. This, together with the observed validity of the MJ
distributions, provides a justification for our model, as a
tool to simulate relativistic many particle systems. Oth-
erwise, if this model is accepted, it affords a microscopic
justification of the relativistic molecular chaos hypothesis,

underlying relativistic kinetic theory and relativistic hy-
drodynamics.

Furthermore, linear relations of temperature and mean
kinetic energy have been found both in classical and ultra-
relativistic regimes. This allows us to obtain a definition
of temperature in a relativistic system, something rather
problematic in general [9], which deserves further investi-
gations.

The authors are grateful to Fasma Diele for help with data
handling.

References

1. S.R. de Groot, W.A. van Leeuwen, Ch.G. van Weert,
Relativistic Kinetic Theory (North-Holland, Amsterdam,
1980)

2. C. Cercignani, G.M. Kremer, The Relativistic Boltzmann
Equation: Theory and Application, Birkhäuser Progress in
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